domingo, 11 de julio de 2010

foto de mi querida normal

que es un fenomeno electromagnetico

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.
El electromagnetismo es una
teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.
El electromagnetismo considerado como fuerza es una de las cuatro
fuerzas fundamentales del universo actualmente conocido.
Historia
Artículo principal:
Historia del electromagnetismo
Desde la
antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.[1] Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Guericke, Stephen Gray, Benjamin Franklin, Alessandro Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.

Michael Faraday.
A principios del
siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie Ampère, William Sturgeon, Joseph Henry, Georg Simon Ohm, Michael Faraday en ese siglo, son unificados por James Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.[1]

James Clerk Maxwell.
Las ahora llamadas
ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.[2] Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla.[3] El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.
En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como
electrodinámica cuántica.
Electrostática
Artículo principal:
Electrostática

Un electroscopio usado para medir la carga eléctrica de un objeto.
Cuando hablamos de
electrostática nos referimos a los fenómenos que ocurren debido a una propiedad intrínseca y discreta de la materia, la carga, cuando es estacionaria o no depende del tiempo. La unidad de carga elemental, es decir, la más pequeña observable, es la carga que tiene el electrón.[4] Se dice que un cuerpo está cargado eléctricamente cuando tiene exceso o falta de electrones en los átomos que lo componen. Por definición el defecto de electrones se la denomina carga positiva y al exceso carga negativa.[5] La relación entre los dos tipos de carga es de atracción cuando son diferentes y de repulsión cuando son iguales.
La carga elemental es una unidad muy pequeña para cálculos prácticos, es por eso que en el
sistema internacional a la unidad de carga eléctrica, el culombio, se le define como la cantidad de carga de 6,25 x 1018 electrones.[4] El movimiento de electrones por un conductor se denomina corriente eléctrica y la cantidad de carga eléctrica que pasa por unidad de tiempo se la define como intensidad de corriente. Se pueden introducir más conceptos como el de diferencia de potencial o el de resistencia, que nos conduciría ineludiblemente al área de circuitos eléctricos, y todo eso se puede ver con más detalle en el artículo principal.
El nombre de la unidad de carga se debe a
Coulomb quien en 1785 llegó a una relación matemática de la fuerza eléctrica entre cargas puntuales, que ahora se la conoce como ley de Coulomb:
Entre dos cargas puntuales y existe una fuerza de atracción o repulsión que varía de acuerdo al cuadrado de la distancia entre ellas y de dirección radial ; y es una constante conocida como
permitividad eléctrica.
Las cargas elementales al no encontrarse solas se las debe tratar como una
distribución de ellas. Es por eso que debe implementarse el concepto de campo, definido como una región del espacio donde existe una magnitud escalar o vectorial dependiente o independiente del tiempo. Así el campo eléctrico está definido como la región del espacio donde actúan las fuerzas eléctricas. Su intensidad se define como el límite al que tiende la fuerza de una distribución de carga sobre una carga positiva que tiende a cero, así:

Campo eléctrico de cargas puntuales.
Y así finalmente llegamos a la expresión matemática que define el campo eléctrico:
Es importante conocer el alcance de este concepto de campo eléctrico, éste nos brinda la oportunidad de conocer cuál es su intensidad y qué ocurre con una carga en cualquier parte de dicho campo sin importar el desconocimiento de qué lo provoca.
[6]
Una forma de obtener qué cantidad de fuerza eléctrica pasa por cierto punto o superficie del campo eléctrico es que se ideó el concepto de flujo eléctrico. Este flujo eléctrico Φ se define como la suma de la cantidad de campo que atraviesa un área determinada, así:
El matemático y físico,
Carl Friedrich Gauss, demostró que la cantidad de flujo eléctrico en un campo es igual al cociente de la carga encerrada por la superficie en la que se calcula el flujo, , y la permitividad eléctrica,. Esta relación se conoce como ley de Gauss:
(
1)
Véanse también:
Carga eléctrica, Ley de Coulomb, Campo eléctrico, Potencial eléctrico y Ley de Gauss
Magnetostática
Artículo principal:
Magnetostática

Líneas de fuerza de una barra magnética.
No fue sino hasta el año de
1820, cuando Hans Christian Ørsted descubrió que el fenómeno magnético estaba ligado al eléctrico, que se obtuvo una teoría científica para el magnetismo.[7] La presencia de una corriente eléctrica, o sea, de un flujo de carga debido a una diferencia de potencial, genera una fuerza magnética que no varía en el tiempo. Si tenemos una carga a una velocidad , ésta generará un campo magnético que es perpendicular a la fuerza magnética inducida por el movimiento en ésta corriente, así:
Para determinar el valor de ese campo magnético,
Jean Baptiste Biot en 1820,[8] dedujo una relación para corrientes estacionarias, ahora conocida como ley de Biot-Savart:
Donde es un coeficiente de proporcionalidad conocido como
permeabilidad magnética, es la intensidad de corriente, el es el diferencial de longitud de la corriente y es la dirección de la corriente. De manera más estricta, es la inducción magnética, dicho en otras palabras, es el flujo magnético por unidad de área. Experimentalmente se llegó a la conclusión que las líneas de fuerza de campos magnéticos eran cerradas, eliminando la posibilidad de un monopolo magnético. La relación matemática se la conoce como ley de Gauss para el campo magnético:
(
2)
Además en la magnetostática existe una ley comparable a la de Gauss en la electrostática, la
ley de Ampère. Ésta ley nos dice que la circulación en un campo magnético es igual a la densidad de corriente que exista en una superficie cerrada:
Cabe indicar que esta ley de Gauss es una generalización de la ley de Biot-Savart. Además que las fórmulas expresadas aquí son para cargas en el
vacío, para más información consúltese los artículos principales.
Véanse también:
Ley de Ampère, Corriente eléctrica, Campo magnético, Ley de Biot-Savart y Momento magnético dipolar
Electrodinámica clásica
Artículo principal:
Electrodinámica
Hasta el momento se han estudiado los
campos eléctricos y magnéticos que no varían con el tiempo. Pero los físicos a finales del siglo XIX descubrieron que ambos campos estaban ligados y así un campo eléctrico en movimiento, una corriente eléctrica que varíe, genera un campo magnético y un campo magnético de por si implica la presencia de un campo eléctrico. Entonces, lo primero que debemos definir es la fuerza que tendría una partícula cargada que se mueva en un campo magnético y así llegamos a la unión de las dos fuerzas anteriores, lo que hoy conocemos como la fuerza de Lorentz:
(
3)
Entre 1890 y 1900 Liénard y Wiechert calcularon el campo electromagnético asociado a cargas en movimiento arbitrario, resultado que se conoce hoy como
potenciales de Liénard-Wiechert.
Por otro lado, para generar una corriente eléctrica en un circuito cerrado debe existir una
diferencia de potencial entre dos puntos del circuito, a ésta diferencia de potencial se la conoce como fuerza electromotriz o fem. Ésta fuerza electromotriz es proporcional a la rapidez con que el flujo magnético varía en el tiempo, esta ley fue encontrada por Michael Faraday y es la interpretación de la inducción electromagnética, así un campo magnético que varía en el tiempo induce a un campo eléctrico, a una fuerza electromotriz. Matemáticamente se representada como:
(
4)
En un trabajo del físico
James Clerk Maxwell de 1861 reunió las tres ecuaciones anteriormente citadas (1), (2) y (4) e introdujo el concepto de una corriente de desplazamiento como una densidad de corriente efectiva y llego a la última de las ecuaciones, la ley de Ampère generalizada (5), ahora conocidas como ecuaciones de Maxwell:
(
5)
Las cuatro ecuaciones, tanto en su forma diferencial como en la integral aquí descritas, fueron las revisiones hechas por
Oliver Heaviside. Pero el verdadero poder de éstas ecuaciones, más la fuerza de Lorentz (3), se centra en que juntas son capaces de describir cualquier fenómeno electromagnético, además de las consecuencias físicas que posteriormente se describirán.[9]

Esquema de una onda electromagnética.
La genialidad del trabajo de Maxwell es que sus ecuaciones describen un campo eléctrico que va ligado inequívocamente a un campo magnético perpendicular a éste y a la dirección de su propagación, éste campo es ahora llamado
campo electromagnético.[10] Además la solución de éstas ecuaciones permitía la existencia de una onda que se propagaba a la velocidad de la luz, con lo que además de unificar los fenómenos eléctricos y magnéticos la teoría formulada por Maxwell predecía con absoluta certeza los fenómenos ópticos.
Así la teoría predecía a una onda que, contraria a las ideas de la época, no necesitaba un medio de propagación; la
onda electromagnética se podía propagar en el vacío debido a la generación mutua de los campos magnéticos y eléctricos. Esta onda a pesar de tener una velocidad constante, la velocidad de la luz c, puede tener diferente longitud de onda y consecuentemente dicha onda transporta energía. La radiación electromagnética recibe diferentes nombres al variar su longitud de onda, como rayos gamma, rayos X, espectro visible, etc.; pero en su conjunto recibe el nombre de espectro electromagnético.

Espectro electromagnético.
Véanse también:
Fuerza de Lorentz, Fuerza electromotriz, Ley de Ampère, Ecuaciones de Maxwell, Campo electromagnético, Radiación electromagnética y Espectro electromagnético
Formulación covariante
Artículo principal:
Tensor de campo electromagnético
Clásicamente, al fijar un
sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero al tener a un observador con movimiento relativo respecto al sistema de referencia, éste medirá efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan como magnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.[11]
Así, la expresión para el campo electromagnético es:
Y las expresiones covariantes para las ecuaciones de Maxwell (
7) y la fuerza de Lorentz (6) se reducen a:
(
6)
(
7)
Electrodinámica cuántica

Diagrama de Feynman mostrando la fuerza electromagnética entre dos electrones por medio del intercambio de un fotón virtual.
Artículo principal:
Electrodinámica cuántica
Posteriormente a la revolución cuántica de inicios del
siglo XX, los físicos se vieron forzados a buscar una teoría cuántica de la interacción electromagnética. El trabajo de Einstein con el efecto fotoeléctrico y la posterior formulación de la mecánica cuántica sugerían que la interacción electromagnética se producía mediante el intercambio de partículas elementales llamadas fotones. La nueva formulación cuántica lograda en la década de los años 40 del siglo XX describía la interacción de este fotón portador de fuerza y las otras partículas portadoras de materia.[12]
La
electrodinámica cuántica es principalmente una teoría cuántica de campos renormalizada. Su desarrollo fue obra de Sinitiro Tomonaga, Julian Schwinger, Richard Feynman y Freeman Dyson alrededor de los años 1947 a 1949.[13] En la electrodinámica cuántica, la interacción entre partículas viene descrita por un lagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinámica cuántica, el campo de gauge donde las partículas interactúan es el campo electromagnético y esas partículas son los fotones.[13]
Matemáticamente, el lagrangiano para la interacción entre
fermiones mediante intercambio de fotones viene dado por:
Donde el significado de los términos es:
son las
matrices de Dirac;
y son los campos o
espinores de Dirac que representan las partículas cargadas eléctricamente;
es la
derivada covariante asociada a la simetría gauge;
el operador asociado al
potencial vector covariante del campo electromagnético y
el operador de campo asociado
tensor de campo electromagnético
Historia
Artículo principal: Historia del electromagnetismo
Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.[1] Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Guericke, Stephen Gray, Benjamin Franklin, Alessandro Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.


Michael Faraday.A principios del siglo XIX Hans Christian Ørsted encontró evidencia empírica de que los fenómenos magnéticos y eléctricos estaban relacionados. De ahí es que los trabajos de físicos como André-Marie Ampère, William Sturgeon, Joseph Henry, Georg Simon Ohm, Michael Faraday en ese siglo, son unificados por James Clerk Maxwell en 1861 con un conjunto de ecuaciones que describían ambos fenómenos como uno solo, como un fenómeno electromagnético.[1]


James Clerk Maxwell.Las ahora llamadas ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.[2] Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alva Edison o el generador de corriente alterna por Nikola Tesla.[3] El éxito predicitivo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendrik Antoon Lorentz y Henri Poincaré.

En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.

Electrostática
Artículo principal: Electrostática

Un electroscopio usado para medir la carga eléctrica de un objeto.Cuando hablamos de electrostática nos referimos a los fenómenos que ocurren debido a una propiedad intrínseca y discreta de la materia, la carga, cuando es estacionaria o no depende del tiempo. La unidad de carga elemental, es decir, la más pequeña observable, es la carga que tiene el electrón.[4] Se dice que un cuerpo está cargado eléctricamente cuando tiene exceso o falta de electrones en los átomos que lo componen. Por definición el defecto de electrones se la denomina carga positiva y al exceso carga negativa.[5] La relación entre los dos tipos de carga es de atracción cuando son diferentes y de repulsión cuando son iguales.

La carga elemental es una unidad muy pequeña para cálculos prácticos, es por eso que en el sistema internacional a la unidad de carga eléctrica, el culombio, se le define como la cantidad de carga de 6,25 x 1018 electrones.[4] El movimiento de electrones por un conductor se denomina corriente eléctrica y la cantidad de carga eléctrica que pasa por unidad de tiempo se la define como intensidad de corriente. Se pueden introducir más conceptos como el de diferencia de potencial o el de resistencia, que nos conduciría ineludiblemente al área de circuitos eléctricos, y todo eso se puede ver con más detalle en el artículo principal.

El nombre de la unidad de carga se debe a Coulomb quien en 1785 llegó a una relación matemática de la fuerza eléctrica entre cargas puntuales, que ahora se la conoce como ley de Coulomb:



Entre dos cargas puntuales y existe una fuerza de atracción o repulsión que varía de acuerdo al cuadrado de la distancia entre ellas y de dirección radial ; y es una constante conocida como permitividad eléctrica.

Las cargas elementales al no encontrarse solas se las debe tratar como una distribución de ellas. Es por eso que debe implementarse el concepto de campo, definido como una región del espacio donde existe una magnitud escalar o vectorial dependiente o independiente del tiempo. Así el campo eléctrico está definido como la región del espacio donde actúan las fuerzas eléctricas. Su intensidad se define como el límite al que tiende la fuerza de una distribución de carga sobre una carga positiva que tiende a cero, así:


Campo eléctrico de cargas puntuales.
Y así finalmente llegamos a la expresión matemática que define el campo eléctrico:


Es importante conocer el alcance de este concepto de campo eléctrico, éste nos brinda la oportunidad de conocer cuál es su intensidad y qué ocurre con una carga en cualquier parte de dicho campo sin importar el desconocimiento de qué lo provoca.[6]

Una forma de obtener qué cantidad de fuerza eléctrica pasa por cierto punto o superficie del campo eléctrico es que se ideó el concepto de flujo eléctrico. Este flujo eléctrico Φ se define como la suma de la cantidad de campo que atraviesa un área determinada, así:


El matemático y físico, Carl Friedrich Gauss, demostró que la cantidad de flujo eléctrico en un campo es igual al cociente de la carga encerrada por la superficie en la que se calcula el flujo, , y la permitividad eléctrica,. Esta relación se conoce como ley de Gauss:

(1)
Véanse también: Carga eléctrica, Ley de Coulomb, Campo eléctrico, Potencial eléctrico y Ley de Gauss
Magnetostática
Artículo principal: Magnetostática

Líneas de fuerza de una barra magnética.No fue sino hasta el año de 1820, cuando Hans Christian Ørsted descubrió que el fenómeno magnético estaba ligado al eléctrico, que se obtuvo una teoría científica para el magnetismo.[7] La presencia de una corriente eléctrica, o sea, de un flujo de carga debido a una diferencia de potencial, genera una fuerza magnética que no varía en el tiempo. Si tenemos una carga a una velocidad , ésta generará un campo magnético que es perpendicular a la fuerza magnética inducida por el movimiento en ésta corriente, así:






Para determinar el valor de ese campo magnético, Jean Baptiste Biot en 1820,[8] dedujo una relación para corrientes estacionarias, ahora conocida como ley de Biot-Savart:






Donde es un coeficiente de proporcionalidad conocido como permeabilidad magnética, es la intensidad de corriente, el es el diferencial de longitud de la corriente y es la dirección de la corriente. De manera más estricta, es la inducción magnética, dicho en otras palabras, es el flujo magnético por unidad de área. Experimentalmente se llegó a la conclusión que las líneas de fuerza de campos magnéticos eran cerradas, eliminando la posibilidad de un monopolo magnético. La relación matemática se la conoce como ley de Gauss para el campo magnético:

(2)
Además en la magnetostática existe una ley comparable a la de Gauss en la electrostática, la ley de Ampère. Ésta ley nos dice que la circulación en un campo magnético es igual a la densidad de corriente que exista en una superficie cerrada:


Cabe indicar que esta ley de Gauss es una generalización de la ley de Biot-Savart. Además que las fórmulas expresadas aquí son para cargas en el vacío, para más información consúltese los artículos principales.

Véanse también: Ley de Ampère, Corriente eléctrica, Campo magnético, Ley de Biot-Savart y Momento magnético dipolar
Electrodinámica clásica
Artículo principal: Electrodinámica
Hasta el momento se han estudiado los campos eléctricos y magnéticos que no varían con el tiempo. Pero los físicos a finales del siglo XIX descubrieron que ambos campos estaban ligados y así un campo eléctrico en movimiento, una corriente eléctrica que varíe, genera un campo magnético y un campo magnético de por si implica la presencia de un campo eléctrico. Entonces, lo primero que debemos definir es la fuerza que tendría una partícula cargada que se mueva en un campo magnético y así llegamos a la unión de las dos fuerzas anteriores, lo que hoy conocemos como la fuerza de Lorentz:

(3)
Entre 1890 y 1900 Liénard y Wiechert calcularon el campo electromagnético asociado a cargas en movimiento arbitrario, resultado que se conoce hoy como potenciales de Liénard-Wiechert.

Por otro lado, para generar una corriente eléctrica en un circuito cerrado debe existir una diferencia de potencial entre dos puntos del circuito, a ésta diferencia de potencial se la conoce como fuerza electromotriz o fem. Ésta fuerza electromotriz es proporcional a la rapidez con que el flujo magnético varía en el tiempo, esta ley fue encontrada por Michael Faraday y es la interpretación de la inducción electromagnética, así un campo magnético que varía en el tiempo induce a un campo eléctrico, a una fuerza electromotriz. Matemáticamente se representada como:

(4)
En un trabajo del físico James Clerk Maxwell de 1861 reunió las tres ecuaciones anteriormente citadas (1), (2) y (4) e introdujo el concepto de una corriente de desplazamiento como una densidad de corriente efectiva y llego a la última de las ecuaciones, la ley de Ampère generalizada (5), ahora conocidas como ecuaciones de Maxwell:

(5)
Las cuatro ecuaciones, tanto en su forma diferencial como en la integral aquí descritas, fueron las revisiones hechas por Oliver Heaviside. Pero el verdadero poder de éstas ecuaciones, más la fuerza de Lorentz (3), se centra en que juntas son capaces de describir cualquier fenómeno electromagnético, además de las consecuencias físicas que posteriormente se describirán.[9]


Esquema de una onda electromagnética.La genialidad del trabajo de Maxwell es que sus ecuaciones describen un campo eléctrico que va ligado inequívocamente a un campo magnético perpendicular a éste y a la dirección de su propagación, éste campo es ahora llamado campo electromagnético.[10] Además la solución de éstas ecuaciones permitía la existencia de una onda que se propagaba a la velocidad de la luz, con lo que además de unificar los fenómenos eléctricos y magnéticos la teoría formulada por Maxwell predecía con absoluta certeza los fenómenos ópticos.

Así la teoría predecía a una onda que, contraria a las ideas de la época, no necesitaba un medio de propagación; la onda electromagnética se podía propagar en el vacío debido a la generación mutua de los campos magnéticos y eléctricos. Esta onda a pesar de tener una velocidad constante, la velocidad de la luz c, puede tener diferente longitud de onda y consecuentemente dicha onda transporta energía. La radiación electromagnética recibe diferentes nombres al variar su longitud de onda, como rayos gamma, rayos X, espectro visible, etc.; pero en su conjunto recibe el nombre de espectro electromagnético.


Espectro electromagnético.Véanse también: Fuerza de Lorentz, Fuerza electromotriz, Ley de Ampère, Ecuaciones de Maxwell, Campo electromagnético, Radiación electromagnética y Espectro electromagnético
Formulación covariante
Artículo principal: Tensor de campo electromagnético
Clásicamente, al fijar un sistema de referencia, se puede descomponer los campos eléctricos y magnéticos del campo electromagnético. Pero al tener a un observador con movimiento relativo respecto al sistema de referencia, éste medirá efectos eléctricos y magnéticos diferentes de un mismo fenómeno electromagnético. El campo eléctrico y la inducción magnética a pesar de ser elementos vectoriales no se comportan como magnitudes físicas vectoriales, por el contrario la unión de ambos constituye otro ente físico llamado tensor y en este caso el tensor de campo electromagnético.[11]

Así, la expresión para el campo electromagnético es:


Y las expresiones covariantes para las ecuaciones de Maxwell (7) y la fuerza de Lorentz (6) se reducen a:

(6)
(7)
Electrodinámica cuántica

Diagrama de Feynman mostrando la fuerza electromagnética entre dos electrones por medio del intercambio de un fotón virtual.Artículo principal: Electrodinámica cuántica
Posteriormente a la revolución cuántica de inicios del siglo XX, los físicos se vieron forzados a buscar una teoría cuántica de la interacción electromagnética. El trabajo de Einstein con el efecto fotoeléctrico y la posterior formulación de la mecánica cuántica sugerían que la interacción electromagnética se producía mediante el intercambio de partículas elementales llamadas fotones. La nueva formulación cuántica lograda en la década de los años 40 del siglo XX describía la interacción de este fotón portador de fuerza y las otras partículas portadoras de materia.[12]

La electrodinámica cuántica es principalmente una teoría cuántica de campos renormalizada. Su desarrollo fue obra de Sinitiro Tomonaga, Julian Schwinger, Richard Feynman y Freeman Dyson alrededor de los años 1947 a 1949.[13] En la electrodinámica cuántica, la interacción entre partículas viene descrita por un lagrangiano que posee simetría local, concretamente simetría de gauge. Para la electrodinámica cuántica, el campo de gauge donde las partículas interactúan es el campo electromagnético y esas partículas son los fotones.[13]

Matemáticamente, el lagrangiano para la interacción entre fermiones mediante intercambio de fotones viene dado por:


Donde el significado de los términos es:

son las matrices de Dirac;
y son los campos o espinores de Dirac que representan las partículas cargadas eléctricamente;
es la derivada covariante asociada a la simetría gauge;
el operador asociado al potencial vector covariante del campo electromagnético y
el operador de campo asociado tensor de campo electromagnético

linea del tiempo

Siglo III a.C- siglo XII - 1660 -1675 –1752-1755 -1784 -1800- 1820 –1821-1831- 1837-1861 -1887 -1891-1902 -1905
Siglo III a.C: los chinos comenzaron a utilizar la brújula
Siglo XII: los chinos utilizan la piedra imán brújula para la navegación
1660: Otto Bonguericke invento uno de los primeros generadores electroestáticos
1675: Robert Boyle declaro la atracción y repulsión eléctrica , puede actuar a través del vacio
1752: Benjamín Franklin descubre los potenciales eléctricos
1755:Henry Elles planteo la relación entre electricidad y magnetismo
1784: Charles Coulomb ideo la balanza de terceon y planteo la ley coulomb
1800: Alessandro Volta creo el primer dispositivo para crear una gran corriente eléctrica
1820: Oersted descubre la acción de la corriente con una aguja magnetica
1821: Andre Marie ampere plantea la ley de Amper
1831: Michael Faraday plantea la ley de Farade
1837: Karl Gauss plantea la ley de gauss ( flujo de campo eléctrico)
1861: James Maxwell plantea cuatro ecuaciones conocidas (Maxwell, Faraday, Coulomb y Glauss)
1887: Hein Rich Hertz demostró la existencia de las ondas electromagnéticas
1891:Nikola Tesla inventa el motor de inducción polifásico
1902: Lorentz y Zeeman ganaron el premio nobel de física (la influencia del magnetismo en la radiación)(radiación electromagnética)
1905: Albert Einstein propuso la teoría de la relatividad especial

temma libre

tema libre
Dieléctrico, sustancia que es mala conductora de la electricidad y que amortiguará la fuerza de un campo eléctrico que la atraviese. Las sustancias conductoras carecen de esta propiedad de amortiguación. Dos cuerpos de cargas opuestas situados a cada lado de un trozo de vidrio (un dieléctrico) se atraerán entre sí, pero si entre ambos cuerpos se coloca una lámina de cobre, la carga será conducida por el metal.
En la mayoría de los casos, las propiedades de un dieléctrico son producto de la polarización de la sustancia. Al colocar un dieléctrico en un campo eléctrico, los electrones y protones que constituyen sus átomos se reorientarán a sí mismos, y en algunos casos las moléculas se polarizarán de igual modo. Como resultado de esta polarización, el dieléctrico queda sometido a una tensión, almacenando energía que quedará disponible al retirar el campo eléctrico. La polarización de un dieléctrico es similar a la que se produce al magnetizar un trozo de hierro. Como en el caso de un imán, parte de la polarización se mantiene al retirar la fuerza polarizadora. Un dieléctrico compuesto de un disco de parafina endurecido al someterlo a una tensión eléctrica mantendrá su polarización durante años. Estos dieléctricos se denominan electretos.
La eficacia de los dieléctricos se mide por su relativa capacidad de almacenar energía y se expresa en términos de constante dieléctrica (también denominada permitividad relativa), tomando como unidad el valor del vacío. Los valores de esa constante varían desde poco más de 1 en la atmósfera hasta 100 o más en ciertas cerámicas que contienen óxido de titanio. El vidrio, la mica, la porcelana y los aceites minerales, que a menudo se utilizan como dieléctricos, tienen constantes entre 2 y 9. La capacidad de un dieléctrico de soportar campos eléctricos sin perder sus propiedades aislantes se denomina resistencia de aislamiento o rigidez dieléctrica. Un buen dieléctrico debe devolver un gran porcentaje de la energía almacenada en él al invertir el campo. Los dieléctricos, especialmente los que tienen constantes dieléctricas altas, se emplean ampliamente en todas las ramas de la ingeniería eléctrica para incrementar la eficacia de los condensadores.

fuentes y formas de energia en colombia

El petróleo y el gas natural son los recursos energéticos más importantes de Sudamérica. Sin embargo, los más antiguos han sido la leña y el carbón vegetal, muy utilizados para fundir hierro y acero o para refinar azúcar. Existe una gran dependencia del petróleo y del gas natural, pues sólo dos países de Sudamérica son autosuficientes en estas fuentes energéticas. Las necesidades de distribución obligaron a construir extensos sistemas de oleoductos y gasoductos en Argentina, Venezuela y Colombia, así como sistemas más pequeños en otros lugares. No obstante, los principales sistemas de oleoductos de Sudamérica transportan más crudo y gas a las terminales de exportación que a los mercados nacionales.
El carbón, cuyas reservas no son muy importantes en la actualidad, fue una energía empleada al principio en el desarrollo del transporte de rieles y agua y en la industria en Chile, Argentina, Brasil y Colombia, pero hace mucho tiempo que perdió su relevancia como recurso energético. En Brasil, el principal combustible de automóviles es el alcohol derivado de la caña de azúcar.
Sólo desde la década de 1950, la energía hidroeléctrica se convirtió en la principal alternativa a la energía termoeléctrica. El desarrollo de la energía hidroeléctrica se inició en Brasil, Chile y Colombia. La capacidad de las centrales hidroeléctricas en funcionamiento constituye hoy el 60% del potencial eléctrico en Paraguay, Brasil, Uruguay, Colombia y Bolivia. También es importante la energía hidroeléctrica en Perú, Chile, Ecuador, Surinam y Argentina, donde la capacidad de energía generada supera el 40%. El desarrollo hidroeléctrico en cadena va desde las pequeñas instalaciones que se utilizan en las provincias del interior a las enormes instalaciones construidas en el curso alto y medio del Paraná, y en el tramo alto y bajo del río São Francisco.
energia en colombia:
El país cuenta con numerosas instalaciones hidroeléctricas que generan el 75,52% de la producción eléctrica. En 2003 la producción anual fue de 47.136 millones de KWh. Los principales sistemas hidroeléctricos están localizados en Antioquia, Cundinamarca, Huila y Tolima. En el departamento de Boyacá destaca la central hidroeléctrica de Chivor y en Antioquia la de Guatapé, la más grande del país.

central hidroelectrica de chivor: Hidroeléctrica de Chivor, central hidroeléctrica colombiana situada a 160 km al noroeste de Santafé de Bogotá, próxima a la población de Santa María en el departamento de Boyacá. Es propiedad de la empresa estatal Interconexión Eléctrica S.A. (ISA) y tiene capacidad para generar 1.000 MW de potencia. En la construcción de la primera etapa (1970-1977) se reguló el río Batá en un embalse formado por la presa de la Esmeralda con una capacidad de 758 millones de m3 y una longitud de 22 km. El caudal del río (con un promedio de 62 m3/s) se conduce por túneles a la hoya del río Lengupá, para desarrollar una caída de 800 m. En la construcción de la segunda etapa (1976-1982) se llevaron al embalse las aguas de los ríos Tunjita, Negro y Rucio con un caudal promedio de 20 m3/s. La hoya hidrográfica utilizada tiene una extensión de 2.420 km2 y la precipitación media anual es de 2.083 milímetros.
Energía térmica: energía que se transfiere de un cuerpo a otro debido a su diferencia de temperaturas. También recibe el nombre de calor. La unidad de la energía térmica es el julio, pero aún se sigue utilizando la unidad histórica del calor, la caloría.
Cuando dos cuerpos se ponen en contacto térmico, fluye energía desde el que está a mayor temperatura hasta el que está a menor temperatura, hasta que ambas se igualan.
La energía térmica Q que interviene en una variación de temperatura ΔT de un cuerpo de masa m es: Q = m·c·ΔTdonde c es la capacidad calorífica específica del cuerpo.
Sin embargo, la energía térmica también puede dar lugar a un cambio de fase sin que exista variación de la temperatura del cuerpo. En este caso, la energía térmica Q es proporcional a la masa m de la sustancia: Q = m·Ldonde L es una constante característica de la sustancia y del cambio de fase que se trate.
Así mismo es un hecho experimental que, con muy pocas excepciones, la energía térmica provoca la dilatación de los cuerpos. Las expresiones que cuantifican este efecto de la energía térmica son muy diferentes según el estado de la materia en el que se encuentren los cuerpos.
Energía cinética, energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto según la ecuación E = (1/2) mv2donde m es la masa del objeto y v2 la velocidad del mismo elevada al cuadrado. El valor de E también puede derivarse de la ecuación E = (ma)ddonde a es la aceleración de la masa m y d es la distancia a lo largo de la cual se acelera. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia, aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer.
Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.




Generadores eléctricos


Estos generadores de la presa Bonneville, en Oregón (Estados Unidos) producen electricidad mediante turbinas movidas por agua.

Energía hidráulica, energía que se obtiene de la caída del agua desde cierta altura hasta un nivel inferior, lo que provoca el movimiento de ruedas hidráulicas o turbinas. La hidroelectricidad es un recurso natural disponible en las zonas que presentan suficiente cantidad de agua. Su desarrollo requiere construir pantanos, presas, canales de derivación, y la instalación de grandes turbinas y equipamiento para generar electricidad (véase Generación y transporte de electricidad). Todo ello implica la inversión de grandes sumas de dinero, por lo que no resulta competitiva en regiones donde el carbón o el petróleo son baratos, aunque el coste de mantenimiento de una central térmica, debido al combustible, sea más caro que el de una central hidroeléctrica. Además, el peso de las consideraciones medioambientales, por los graves daños que ocasiona a los ríos y a los pueblos ribereños, centra la atención en esta fuente de energía renovable.
Presa de Itaipú, Paraguay
En esta fotografía aérea puede observarse la presa de Itaipú, proyecto conjunto de Brasil y Paraguay sobre las aguas del río Paraná, y su central hidroeléctrica, la mayor del mundo, de la que se obtienen importantes recursos energéticos para ambos países y el conjunto regional. Con una altura de 196 m y 8 km de largo, cuenta con 14 vertederos que actúan como cataratas artificiales.

Energía nuclear: energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.
Central nuclear de Vandellòs
Las centrales nucleares utilizan la energía liberada en los procesos de fisión nuclear para producir electricidad. En España hay seis centrales nucleares en funcionamiento: Almaraz, Ascó, Cofrentes, Santa María de Garoña, Trillo y Vandellòs II. En la fotografía se muestra esta última, que se encuentra en la provincia de Tarragona.

Red de energía eléctrica
En una central hidroeléctrica, el agua que cae de una presa hace girar turbinas que impulsan generadores eléctricos. La electricidad se transporta a una estación de transmisión, donde un transformador convierte la corriente de baja tensión en una corriente de alta tensión. La electricidad se transporta por cables de alta tensión a las estaciones de distribución, donde se reduce la tensión mediante transformadores hasta niveles adecuados para los usuarios. Las líneas primarias pueden transmitir electricidad con tensiones de hasta 500.000 voltios o más. Las líneas secundarias que van a las viviendas tienen tensiones de 220 o 110 voltios.

taxonomia


La taxonomía (del griego ταξις, taxis, "ordenamiento", y νομος, nomos, "norma" o "regla") es, en su sentido más general, la ciencia de la clasificación. Habitualmente, se emplea el término para designar a la taxonomía biológica, la ciencia de ordenar a los organismos en un sistema de clasificación compuesto por una jerarquía de taxones anidados.
Los árboles filogenéticos tienen forma de dendrogramas. Cada nodo del dendrograma se corresponde con un clado: un grupo de organismos emparentados que comparten una población ancestral común (que no necesariamente estaba compuesta de un único individuo). Los nodos terminales (aquí simbolizados por letras individuales) no pueden ir más allá de las especies, ya que por definición, por debajo de la categoría especie no se pueden formar grupos reproductivamente aislados entre sí, y por lo tanto no evolucionan como linajes independientes, por lo que no pueden ser representados por un diagrama en forma de árbol.La Taxonomía Biológica es una subdisciplina de la Biología Sistemática, que estudia las relaciones de parentesco entre los organismos y su historia evolutiva. Actualmente, la Taxonomía actúa después de haberse resuelto el árbol filogenético de los organismos estudiados, esto es, una vez que están resueltos los clados, o ramas evolutivas, en función de las relaciones de parentesco entre ellos.

En la actualidad existe el consenso en la comunidad científica de que la clasificación debe ser enteramente consistente con lo que se sabe de la filogenia de los taxones, ya que sólo entonces dará el servicio que se espera de ella al resto de las ramas de la Biología (ver por ejemplo Soltis y Soltis 2003[1] ), pero hay escuelas dentro de la Biología Sistemática que definen con matices diferentes la manera en que la clasificación debe corresponderse con la filogenia conocida.

Más allá de la escuela que la defina, el fin último de la Taxonomía es organizar al árbol filogenético en un sistema de clasificación. Para ello, la escuela cladística (la que predomina hoy en día) convierte a los clados en taxones. Un taxón es un clado al que fue asignada una categoría taxonómica, al que se otorgó un nombre en latín, del que se hizo una descripción, al que se asoció a un ejemplar "tipo", y que fue publicado en una revista científica. Cuando se hace todo esto, el taxón tiene un nombre correcto. La Nomenclatura es la subdisciplina que se ocupa de reglamentar estos pasos, y se ocupa de que se atengan a los principios de nomenclatura. Los sistemas de clasificación que nacen como resultado, funcionan como contenedores de información por un lado, y como predictores por otro.

Una vez que está terminada la clasificación de un taxón, se extraen los caracteres diagnósticos de cada uno de sus miembros, y sobre esa base se confeccionan claves dicotómicas de identificación, las cuales son utilizadas en la tarea de la determinación o identificación de organismos, que ubica a un organismo desconocido en un taxón conocido del sistema de clasificación dado. La Determinación o identificación es además la especialidad, dentro de la taxonomía, que se ocupa de los principios de elaboración de las claves dicotómicas y otros instrumentos dirigidos al mismo fin.

Las normas que regulan la creación de los sistemas de clasificación son en parte convenciones más o menos arbitrarias. Para comprender estas arbitrariedades (por ejemplo, la nomenclatura binominal de las especies y la uninominal de las categorías superiores a especie, o también la cantidad de categorías taxonómicas y los nombres de las mismas) es necesario estudiar la historia de la Taxonomía, que nos ha dejado como herencia los Códigos Internacionales de Nomenclatura a cuyas reglas técnicas deben atenerse los sistemas de clasificación.

La nueva crisis de biodiversidad, los avances en el análisis del ADN, y la posibilidad de intercambiar información a través de Internet, han dado un enorme impulso a esta ciencia en la década de 2000, y han generado un debate acerca de la necesidad de hacer reformas sustanciales a los Códigos, que aún se están discutiendo. Algunos ejemplos de nuevas propuestas son la "Taxonomía libre de rangos", las "marcas de ADN" y la publicación por Internet.
Nomenclatura
Artículo principal: Nomenclatura
La Nomenclatura es la subdisciplina que aplica las reglas para nombrar y describir a los taxones. El objetivo principal de la Nomenclatura es que (1) cada organismo posea sólo un nombre correcto, y (2) no haya 2 taxones diferentes llevando el mismo nombre. Las reglas de nomenclatura están escritas en los Códigos Internacionales de Nomenclatura. Hay uno para cada disciplina: de Zoología, de Botánica, de bacterias y de virus, y se actualizan frecuentemente como resultado de los congresos internacionales que reúnen a los científicos para tal efecto. Los Códigos proveen el reglamento para que los taxones elegidos sean "válidamente publicados". Para ello deben poseer un "nombre correcto" (y una descripción si el taxón pertenece a la categoría especie), y ser publicados en alguna revista científica o libro.

Los "nombres correctos" de los taxones son los que se atienen a los principios de Nomenclatura, expresos en los Códigos de Nomenclatura Botánica y Zoológica, que son:

1.La nomenclatura botánica, la nomenclatura zoológica, y la nomenclatura bacteriológica son independientes la una de la otra (cada una está representada por su propio Código). Como consecuencia, el mismo nombre puede ser utilizado para una planta o para un animal o una bacteria (aunque no es aconsejable).

Cada especie correctamente nombrada y descripta debe poseer un tipo (técnicamente, es el nombre de la especie lo que posee un tipo). En plantas, por lo general son ejemplares de la especie que fueron colectados y secados en herbarios como el de la foto (aplastándolos entre papeles de diario que se cambian todos los días hasta que dejan de humedecerse), y luego almacenados cuidadosamente en un lugar accesible, como un museo o un jardín botánico. Si almacenar un ejemplar como tipo es complicado, se puede reemplazar por cuidadosas ilustraciones.2.El nombre de cada grupo taxonómico debe estar acompañado de un tipo. El "tipo" es algo diferente si estamos hablando de un nombre en la categoría especie o inferior, o de un nombre de una categoría superior a especie. Cuando es descripto un taxón correspondiente a la categoría especie o inferior a especie, el autor debe asignar un espécimen específico de la especie para que sea designado como "el espécimen tipo nomenclatural" que debe estar almacenado en un lugar accesible (por ejemplo si es una planta, en un herbario), aunque también se pueden aceptar ilustraciones. Con respecto a los taxones superiores a especie, el nombre del género posee como "tipo" al nombre de aquella especie circunscripta en él que fue publicada primero. El nombre de cada taxón superior a género posee como "tipo" al nombre del género que fue publicado primero dentro de la circunscripción del taxón. El tipo tiene como propósito actuar como referencia para el nombre, ya que es el espécimen sobre el cual el nombre está basado. Por ejemplo, cuando un taxón se divide en dos, de forma que uno de los nuevos taxones conserve el nombre y el otro pase a tener un nombre nuevo, el taxón que se quede con el antiguo nombre debe contener también al antiguo tipo en su circunscripción, y basar su descripción en el tipo. Al tipo utilizado en la publicación original se lo llama holotipo; si el holotipo se pierde, se puede elegir otro espécimen del material original como tipo nomenclatural, al que se llama lectotipo. Si no hay especímenes para crear un lectotipo, se puede colectar un nuevo espécimen para que haga de tipo, al que se llama neotipo.
3.Hay un solo nombre correcto para cada taxón. El nombre correcto de cada taxón es el primero que fue publicado en regla. También conocido como el "principio de prioridad".
4.Puede haber excepciones al principio de prioridad. Por un lado algunos nombres ampliamente usados no son en realidad el nombre más antiguo asignado al taxón, pero al descubrirse este hecho el nombre menos antiguo ya había sido muy extendido. Por otro lado a veces hay taxones que poseen más de un nombre correcto. Entonces se agrega el taxón a la lista de nomina conservanda, nombres que se consideran válidos por razones prácticas.
5.Los nombres científicos deben ser en latín, o latinizados aunque sus orígenes sean en otro idioma.
6.No puede haber dos taxones distintos llevando el mismo nombre dentro de un mismo Código.
7.Las reglas de nomenclatura son retroactivas, a menos que se indique expresamente lo contrario.
Cuando la aplicación estricta de un Código resulta en confusión o ambigüedad, los problemas son llevados a su Comisión respectiva para que tome una decisión al respecto. Por ejemplo, las decisiones tomadas por la Comisión Internacional de Nomenclatura Zoológica (que rige sobre el Código Internacional de Nomenclatura Zoológica) son publicadas en su revista, el Bulletin of Zoological Nomenclature[17] ("Boletín de Nomenclatura Zoológica").

[editar] Categorías taxonómicas
Artículo principal: Categoría taxonómica
La categoría fundamental es la especie, porque ofrece el taxón claramente reconocido y discreto de tamaño más pequeño. Sistemáticos, biólogos evolutivos, biólogos de la conservación, ecólogos, agrónomos, horticultores, biogeógrafos y muchos otros científicos están más interesados en los taxones de la categoría especie que en los de ninguna otra categoría. El concepto de especie ha sido intensamente debatido tanto por la Sistemática como por la Biología evolutiva. Muchos libros recientes ponen el centro de atención en la definición de especie y la especiación (King 1993,[18] Lambert y Spencer 1995,[19] Claridge et al. 1997,[20] Howard y Berlocher 1998,[21] Wilson 1999,[22] Levin 2000,[23] Wheeler y Meier 2000,[24] Schilthuizen 2001[25] ). En animales, en especial en vertebrados de tamaño grande, el criterio de la capacidad de hibridar es el más usado para distinguir especies. En la mayoría de los vertebrados, los grupos de individuos interfértiles coinciden con grupos morfológicos, ecológicos y geográficos, por lo que las especies son fáciles de definir. Incluso se pueden poner a prueba los límites de las especies analizando la interfertilidad entre las poblaciones. Este concepto de especie, llamado "concepto biológico de especie" (o "BSC", por "biological species concept", Mayr 1963,[26] ver también Templeton 1989,[27] Coyne 1992,[28] Mayr 1992[29] ), fue el que dominó la literatura zoológica y, hasta recientemente, también la botánica. Sin embargo, este criterio falla a la hora de definir especies de plantas, debido a que existe hibridación entre especies que conviven en un mismo lugar (a esas especies se las llama a veces "semiespecies" y al grupo que las abarca "syngameon").Tampoco es adecuado para clasificar organismos con reproducción uniparental que evita el intercambio genético (y crea poblaciones mínimamente diferenciadas, llamadas "microespecies"), ni para las especies que se componen de individuos ubicados en lugares muy lejanos (por ejemplo en distintos continentes) que no intercambien nunca material genético entre sí. Además, en las plantas la interfertilidad de las poblaciones varía del 0 al 100%, por lo que, en los niveles intermedios de interfertilidad, la asignación de especie no puede realizarse de forma inequívoca según este concepto de especie biológica (Davis y Heywood 1963[16] ). Por esta razón, los sistemáticos de plantas no definen a las especies como comunidades reproductivas, sino como una población o un grupo de poblaciones que poseen mucha evidencia de formar un linaje evolutivo independiente, abandonando de esta forma el concepto biológico de especie o BSC (Davis y Heywood 1963,[16] Ehrlich y Raven 1969,[30] Raven 1976,[31] Mishler y Donoghue 1982,[32] Donoghue 1985,[33] Mishler y Brandon 1987,[34] Nixon y Wheeler 1990,[35] Davis y Nixon 1992,[36] Kornet 1993,[37] Baum y Shaw 1995,[38] McDade 1995[39] ).

Las poblaciones también son difíciles de definir, normalmente se definen como grupos de individuos de una misma especie que ocupan una región geográfica más o menos bien definida y con los individuos interactuando entre sí. Las poblaciones pueden variar en tamaño de uno a millones de individuos, y pueden persistir en el tiempo por menos de un año o miles de años. Pueden ser producto de la descendencia de un solo individuo, o estar recibiendo constantemente inmigrantes, por lo que también poseen diferentes niveles de diversidad genética.

Se subdivide a la especie en razas cuando se encuentran grupos de poblaciones que difieren morfológicamente entre sí, aunque a veces crezcan juntas e hibriden entre ellas con facilidad. Se denominan subespecies si estas razas poseen poco solapamiento geográfico, aunque todavía exista algo de hibridación entre ellas. Si los migrantes de una población se ven en desventaja reproductiva al arribar a otra población, entonces los sistemáticos consideran que las poblaciones pertenecen a dos especies distintas, claramente definidas.

Por debajo de la raza también se puede seguir subdividiendo en taxones en las categorías variedad y forma.

Las especies a su vez se agrupan en taxones superiores, cada uno en una categoría más alta: géneros, familias, órdenes, clases, filos, y reinos. Una regla mnemotécnica para recordar la jerarquía de los taxones es la siguiente:


El orden se recuerda así: Rey por Reino, filósofo for filum, clase por clase, ordena por orden, familia por familia, géneros por género, y especie por especie.

Una lista de las categorías taxonómicas generalmente usadas incluiría el dominio, el reino, el subreino, el filo (o división, en el caso de las plantas), el subfilo o subdivisión, la superclase, la clase, la subclase, el orden, el suborden, la familia, la subfamilia, la tribu, la subtribu, el género, el subgénero y la especie.

Como las categorías taxonómicas por arriba de la especie son arbitrarias, un género (grupo de especies) en una familia puede no tener la misma edad ni albergar la misma cantidad de variación, ni de hecho tener nada en común con un género de otra familia, más que el hecho de que los dos son grupos monofiléticos que pertenecen a la misma categoría taxonómica. Los sistemáticos experimentados están bien al tanto de esto y se dan cuenta de que los géneros, las familias, etcétera no son unidades comparables (Stevens 1997[40] ); sin embargo, algunos científicos caen en el error frecuente de utilizar esas categorías como si lo fueran. Por ejemplo, es común ver medidas de diversidad de plantas como un listado de las familias de plantas presentes en un lugar dado, si bien el hecho de que esos taxones pertenezcan a una "familia" no significa nada en particular. Esta confusión es la que llevó a que se propusiera la eliminación de las categorías taxonómicas, y de hecho son pocos los sistemáticos que se preocupan por ellas y muchas veces llaman a los grupos monofiléticos con nombres informales para evitarlas (por ejemplo hablan de las "angiospermas" para evitar discutir si son "magnoliophyta", "magnoliophytina", "magnoliopsida", etc.). Ver más adelante una discusión sobre el asunto.

[editar] Nombre científico
Artículo principal: Nombre científico
En la nomenclatura binominal de Linneo, cada especie animal o vegetal queda designada por un binomio (una expresión de dos palabras) en latín, donde la primera, el "nombre genérico", es compartida por las especies del mismo género; y la segunda, el "adjetivo específico" o "epíteto específico", hace alusión a alguna característica o propiedad distintiva, como pueden ser el color (albus, "blanco"; cardinalis, "rojo cardenal"; viridis, "verde"; luteus, "amarillo"; purpureus, "púrpura"; etc.), el origen (africanus, "africano"; americanus, "americano"; alpinus, "alpino"; arabicus, "arábigo"; ibericus, "ibérico"; etc.), al hábitat (arenarius , "que crece en la arena"; campestris, "de los campos"; fluviatilis, "de los ríos"; etc.), un homenaje a una personalidad de la ciencia o de la política o atender a cualquier otro criterio. No es necesario que el nombre esté en latín, sólo es necesario que esté latinizado. Los nombres de géneros siempre van con la primera letra en mayúsculas, los adjetivos específicos siempre van en minúsculas, y los nombres de géneros y los de especies van siempre en itálicas (o subrayados, si se escribe a mano). Al escribir el nombre de especie, el epíteto específico nunca es utilizado solo, y es obligatorio que esté precedido por el nombre del género, de forma que el nombre de la especie sea el binomio completo. El uso de la primera letra del nombre del género precediendo el epíteto específico también es aceptable una vez que el nombre ya apareció en su forma completa en la misma página o en un artículo pequeño. Así por ejemplo, la lombriz de tierra fue llamada Lumbricus terrestris por Linneo, y si el nombre ya apareció antes en el artículo, puede volver a referirse a ella como L. terrestris. Con respecto a los taxones ubicados en la categoría de género y superior, los nombres son uninominales (constan de una sola palabra) y siempre se escriben con la primera letra en mayúsculas (aunque solamente en la categoría de género van en itálicas). Como los Códigos de Nomenclatura prohíben que dentro de cada Código haya dos taxones con el mismo nombre, no puede haber dos géneros con el mismo nombre (ni dos taxones por arriba de género con el mismo nombre), pero como ocurre que el adjetivo específico de las especies sólo se usa después del nombre del género, puede haber dos especies diferentes pertenecientes a géneros diferentes que compartan el mismo adjetivo específico. Una vez fijado, un nombre no es sustituido por otro sin un motivo taxonómico. Por ejemplo el roble de los alrededores de Madrid fue bautizado como Quercus pyrenaica erróneamente, puesto que no se encuentra en los Pirineos, pero tal circunstancia no justifica un cambio de nombre.

Si bien en los tiempos de Linneo los nombres eran sencillos y descriptivos, últimamente se han registrado nombres científicos insólitos: la araña Pachygnatha zappa, porque tiene una mancha en el abdomen igual al bigote del artista Frank Zappa; algunas moscas chupadoras de sangre del género Maruina: Maruina amada, M. amadora, M. cholita, M. muchacha, M. querida, M. chamaca, M. chamaguita, M. chica, M. dama, M. nina, M. tica y M. vidamia, todos adjetivos cariñosos; el dinosaurio que fue llamado Bambiraptor debido a Bambi, el de la película de Disney, que tenía un pequeño tamaño; el molusco bivalvo Abra cadabra (aunque después se lo cambió de género); y quizás el caso más sobresaliente: el género de arañas brasileñas Losdolobus, llamado así porque los investigadores que lo describieron, queriendo homenajear a dos argentinos que habían colaborado, les pidieron a éstos que inventasen un nombre para el nuevo género, que quedó como Losdolobus por "los dolobus", término del lunfardo argentino intraducible en una enciclopedia.[41]

Con respecto a las restricciones para nombrar a los taxones, los géneros y especies no las tienen (salvo por el hecho de que tienen que estar en latín o latinizados), pero las categorías superiores a género a veces es necesario que tengan un sufijo en particular, según se indica en la siguiente tabla:

Categoría taxonómica Plantas Algas Hongos Animales Bacterias[42]
División/Phylum -phyta -mycota
Subdivisión/Subphylum -phytina -mycotina
Clase -opsida -phyceae -mycetes -ia
Subclase -idae -phycidae -mycetidae -idae
Superorden -anae
Orden -ales -ales
Suborden -ineae -ineae
Infraorden -aria
Superfamilia -acea -oidea
Epifamilia -oidae
Familia -aceae -idae -aceae
Subfamilia -oideae -inae -oideae
Infrafamilia -odd[43]
Tribu -eae -ini -eae
Subtribu -inae -ina -inae
Infratribu